Prof. U. Walter
Institute of Astronautics
TU Munich

Research question

This is a mathematical problem from space orbital mechanics. The following equation

$$
\Delta v_{b i}=\left(\sqrt{\frac{2}{1+x y}}-1\right)+\sqrt{y}\left(\sqrt{\frac{2}{1+x}}-1\right)+\sqrt{2 x y}\left(\sqrt{\frac{1}{1+1 / x}}-\sqrt{\frac{1}{1+1 /(x y)}}\right)-(1-\sqrt{y})\left(\frac{1+\sqrt{y}}{\sqrt{(1+y) / 2}}-1\right)
$$

is the normalized difference between the transition effort of a so-called bi-elliptic transfer between an inner and an outer circular orbit with radius a_{\bullet} and a_{\square}, respectively, via an interim orbit with radius r_{\times}(first three terms) and a direct Hohmann transfer (last term). Here

$$
\begin{aligned}
& y \equiv a_{\cdot} / a_{\square} \leq 1 \\
& x \equiv a_{\square} / r_{\times} \leq 1
\end{aligned}
$$

A contour plot of the function delivers the shown figure, where the bright part indicates where the bi-elliptic transfer is more efficient. Of practical importance is the borderline to the dark area where $\Delta v_{b i}=0$.

As can be verified by insertion, for $x=1, \Delta v_{b i}=0$ delivers $y=0$. However, it turns out that for the limit $x \rightarrow 1$ the end-border-point is $y \approx 0.0641778$ and hard to determine more precisely. So, the problem statement reads:

For the limit $x \rightarrow 1$, what is the y to at least 10 decimal places that satisfies

$$
\Delta v_{b i}(x \rightarrow 1, y)=0
$$

Possibly show that no such limit $y>0$ exists.

